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To explain the "stereoblock" structures which occasionally result from homogeneous anionic polymerizations, 
we have examined, in paper I of this series, the diastereosequence distribution resulting from a mechanism in which 
a reactive polymer chain end has two possible states, 1 and 2, in dynamic equilibrium, both capable of adding 
monomer, but each with its own stereospecificity. Here we consider the molecular weight distribution resulting 
from such a mechanism when monofunctional initiators are used. We assume no side reactions such as irrevers­
ible termination or chain transfer and assume initiation to be instantaneous. As a result, under certain limiting 
conditions our molecular weight distribution reduces to the Poisson distribution obtained by Flory for the classical 
one-species polymerization. In general, however, the present mechanism yields a ratio, r, of the weight to number 
average degrees of polymerization which is larger than that obtained from the Poisson distribution. Whenever 
the rate constants for the reactions 1 ?=* 2 are non-zero, our present distribution shares with the Poisson distribu­
tion the property that r approaches unity for long reaction times, 

1. Hypotheses.—In an effort to explain the oc­
currence of "stereoblock" polymers in homogeneous2 

anionic polymerization of a-olefins, we recently postu­
lated3 tha t it sometimes occurs in the course of such 
polymerizations tha t the reactive end of a growing 
polymer molecule exists in two possible states which are 
in dynamic equilibrium and tha t each state is capable of 
adding monomer with its own characteristic ra te con­
s tant and stereospecificity. On calculating the di­
astereosequence distribution resulting from such a 
mechanism we found tha t this "two-state hypothesis" 
not only furnishes an alternative to the "Markoff-
chain hypothesis"4-5 which investigators6 '7 have used 
to interpret their n.m.r. data, but also yields the first 
explanation of "stereoblock" structures to be sus­
ceptible to experimental verification through definite 
predictions of the dependence of n.m.r. spectra on the 
conditions of polymerization. Here we shall consider 
the molecular weight distribution resulting from such a 
mechanism. 

As in reference 3, we consider tha t at a certain time 
(t = 0) monomer is added to a solution of monofunc­
tional initiator. Polymerization then begins, with 
initiation being instantaneous, and proceeds without 
chain transfer, irreversible termination or depolymeriza-
tion. We postulate tha t there are four reactions 
which can take place. T o describe them we indicate 
the condition of a polymer molecule by the symbol 
Ex". The superscript n, representing the degree of 
polymerization, can take on all integral values, while 
x, signifying the state of the reactive end of the polymer, 
can take on two values: x = 1 if the reactive end is in 
s tate 1 and x = 2 for the alternative state 2. Our 
postulated reactions are 

Xb 

Ei" ^ E 2 " (1.1a) 

Xa 
E 2 " — * - E i " (1.1b) 

*i 

E1" + M — ^ E 1 " + 1 (1.1c) 
h 

E2" + M — ^ E 2 " + 1 (l.ld) 

Here Xb is a ra te coefficient for t ha t reaction which takes 
a growing chain from state 1 to state 2. In other words, 
the probability tha t a polymer molecule, known to be of 
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type Ei" a t t ime t, becomes of type E2" in the small 
time interval dt at t is given by XDd£ + o(dt). Simi­
larly, Xadi + o(dt) gives the probability tha t E2" -»• 
E1" occurs in dt at t, given E2" a t time t. The numbers 
ki and fa are ordinary rate constants for the addition 
of monomer to polymer chains in states 1 and 2, re­
spectively. For example, the probability tha t a poly­
mer molecule known to be in the state E1" at time t 
makes the transition Ei" - * Ei"+1 in dt at t is [M]kidt 
+ o(dt) where [M] denotes the monomer concentration. 
The numbers Xa, Xb, fa and fa will depend on the tem­
perature and solvent used; we assume here tha t they 
are independent of the degree of polymerization n. 
We also make the usual "low conversion hypothesis" 
and assume tha t [M] does not change much in the 
course of a given polymerization.8 

I t follows from the chemical hypotheses we have 
made tha t the probability ^ tha t a polymer molecule 
selected at random is in the state 1 a t a given moment 
t is 

4> = XaAXa + Xb) (1.2) 
Let Pn,x(t), x= 1 or 2, be the probability tha t a 

polymer molecule, selected at random, is in the state 
Ex" at time t. Then Q„(t), defined by 

Qn(t) = P„,l(0 + PnM) (1-3) 
is the probability tha t a randomly selected polymer 
molecule has its degree of polymerization equal to n 
at t ime t. By hypothesis, the degree of polymeriza­
tion is unity at t = 0, hence 

Qi(O) = 1 (1.4) 
Since we assume tha t the reactions 1.1a and 1.1b 

are in equilibrium a t / = 0, we have 
P,pl(0) = ^, P1]2(0) = 1 - * (1.5a) 

Of course 
P1111(O) = P„l2(0) = 0, for n > 1 (1.5b) 

For all O 0 

£ PnM) = <P, E PnM) = 1 - + (!'S) 
M = I M = I 

Furthermore, for n = 1, t > 0, we have 
(LP111(OAK = ~([M]h + Ab)Pi,i(0 + XaP l l2(0 (1.7a) 
dPiM)/dt = - ( [ M ] * 2 + X„)Pi,2(0 + XbPi11(O (l-7b) 

and for n > 1, t > 0, we have 

~ ^ = - ([M]*, + Xb)JfUO + 

[M]A1Pn-L1(O + XaP„,2(0 (l-7c) 

^ f ^ = - ( [M]*, + x . ) P U 0 + 
[M]*2P„_i,2(0 + XbPUO (l-7d) 

(8) Since we are here interested in only degree of polymerization, and not 
in diastereosequences, we do not here differentiate between additions which 
result in isotactic and syndiotactic placements. Hence the six reactions of 
section 1 of ref. 3 here reduce to the four reactions 1.1. 
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Equations 1.2-1.7 furnish a complete mathematiza-
tion of our chemical assumptions. On looking a t 1.3 
we see tha t the problem of characterizing the molecular 
weight distribution is tha t of investigating the be­
havior of the solution of the system of differential 
equations 1.7 subject to the initial conditions 1.5. 

Our main interest here is in the moments 

E nmQ»W (1.8) 

of the distribution Qn{t) of the degree of polymerization 
n. We are particularly interested in the number and 
weight average degrees of polymerization n(t), nw(t), 
respectively, and their ratio r(t). These are defined by 

«» = — = 

h 

E »<2»(0 
n = 1 

CO 

E »2<2»w 
n = 1 

CQ 

E »Q«(0 
M = I 

E "WO 

E «Q»w 

(1.9a) 

(1.9b) 

(l-9c) 

I t should be emphasized t ha t in writing our mecha­
nism 1.1 and our equations 1.2-1.7 we make some very 
strong idealizations: We assume instantaneous initia­
tion, no irreversible termination and no chain transfer 
or depolymerization. The molecular weight distribu­
tion is more sensitive than the previously considered 
diastereosequence distribution to departures from such 
idealizations. 

2. Special Cases.—Case I : When one of the two 
X's in 1.1 is zero, say Xb, and the other, Xa, is not zero, 
so tha t \p = 1, then all of the polymer molecules are in 
state 1. In this case the four reactions 1.1 reduce to 
the one reaction 

h 
(2.1) 

n > 1 

Ei" + M —>- E1"+1 

We have 

PnM) = 0, PnM) = QnW 
and the system of differential equations 1.7 reduces to 
the system 

dQiW/dt = -[M]InQiW (2.2a) 

AQnW/dt = -[M]Aj1Qn(O + [M] As1Qn-M (2.2b) 

which is now subject to the initial condition 
for n = 1, Qi(O) = 1 (2.3a) 
for n > 1, Qn(O) = 0 (2.3b) 

The solution of 2.2 subject to 2.3 is known even when 
[M] or ki, or both, depend on t. For instance, [M] 
depends on t, i.e., [M] = [M]', when an appreciable 
amount of monomer is consumed in the polymerization, 
and k\ depends on /, i.e., k\ = ki, if the temperature 
changes in the course of the polymerization. Let us put 

0(0 = C [NlYk1Hr 

The solution of 2.2 subject to 2.3 is 
m - 1 „ -e 

Qn(O = 

(2.4a) 

(2.4b) 
{n - 1)! 

i.e., a Poisson distribution in the "reduced t ime" 
parameter 6(J). This result is not surprising. For, 
when Xb = 0 our chemical hypotheses reduce to the 
familiar single-state polymerization with, of course, 
instantaneous initiation and no termination or depoly­

merization, which was shown by Flory9 to yield a Pois­
son distribution for n. I t follows from 2.4 and 1.9a 
t ha t the number average degree of polymerization is 
given by 

(2.5a) 

(2.5b) 

(2.5c) 

(2.56.) 

(2.6) 

n = 1 + e 

I t also can be shown tha t 

n~2 = 1 + 39 + 9* 

1 + 39 + 02 

n-=- 1 + 6 

= l + 39 + e* 
r i + 2d + e2 

Expressing r as a function of n we have 

= , , 1 _ J_ 
r re (ny 

Thus, for reasonably large n, r is very close to 1. For 
example, when n > 50, 1 < r < 1.02. 

Case I I : Similar to case I is t ha t case in which the 
X's and k's are all strictly positive bu t k\ = ki. Clearly, 
we here again have the Poisson distribution and thus 
eq. 2.4-2.6. 

Case III : Another special, or rather limiting, case is 
tha t in which all the k's and X's are strictly positive but 
yet the reactions 1.1a and 1.1b are both so fast com­
pared to 1.1c and l . l d that , on the average, several 
transitions EiK <=± Ea" occur between successive additions 
of monomer. For a fixed set of non-zero values of the 
X's and k's this limit can be achieved by making [M] 
small. In this limit eq. 2.4-2.6 again describe the 
molecular weight distribution provided k\r in 2.4a is 
replaced by 

hr = tkiT + (l - i>)W (2.7) 

where ip is given by 1.2. 
Case IV : A special case of our mechanism which is 

strikingly different in its behavior from those discussed 
above is t ha t in which k\ > 0, k2 > 0, k\ ^ k2, 0 < \p 
< 1 but Xa = Xb = 0 (exactly). In this case the reac­
tions 1.1a and 1.1b do not occur a t all and polymeriza­
tion behaves as though we had a mixture of two 
non-interacting species, each with its own Poisson dis­
tribution 

Qn(O = +PnM) + (1 ~ ^)PnM) (2.8a) 

where 
±n,x == 

(n - 1)! 
= [M] f kx

TAr 1, 2 (2.8b) 

Here we again make the low conversion hypothesis and 
assume [AI ] to be stat ionary in t ime; this saves us from 
the task of taking into account the competition for 
monomer between the species 1 and 2. We can, how­
ever, continue here to allow ki and k2 to depend on time. 
I t follows from 2.8 tha t 

where 
nmW = <pnr{t) + (1 - iA)«2m(0 (2.9a) 

= E nmP«.*- x = 1, 2 (2.9b) 
M = I 

is the w th moment of the Poisson distribution for 
species x. Equations 2.8, 2.9 and 1.9 yield 

n = XfM1 + (1 - ^)«2 (2.10a) 

^? + (X-^W 
\pni + (1 — i/0"2 

iM* + (1 - +W 
(^n1 + (1 - ^)S2)

2 

(2.10b) 

(2.10c) 

(9) P. J. Flory, J. Am. Chem. Soc, 62, 1561 (1940). 
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where, by 2.8 and 2.9b 

nx = 1 + Bx, x = 1, 2 

re2! = 1 + 39, + 92x, x = 1, 2 

I t follows from 2.11a, 2.10a and 2.8 tha t 

» = 1 + [M] I ATdr s: 

(2.11a) 

(2.11b) 

(2.12) 

where kT is again denned by 2.7. When ki and k2 

are independent of t, 2.10c can be writ ten in the form 

l l . (A1 - J s ) V ( I - \i0(» - i)2 

^ re («)2 ( ^ i + (1 - </-)A2)
2«2 (2.13) 

On examining (2.13) for large n {i.e., large t) we find tha t 

r = l + 
vKi - ^ ) J 1 - A2)

2 

+ 0(1/«) (2.14) 
( # , + ( 1 - )̂A2)

2) 
Hence, our present case is similar to cases I—III in 
tha t J im r is independent of [M ] bu t differs in the 

n—*• « 

important respect tha t r can now be appreciably greater 
than 1 for large n. We remark tha t eq. 2.14 holds only 
if Xa and Xb are exactly zero; for the analysis of the next 
section will show tha t if Xa and Xb do not both vanish, 
then, no mat ter how small the X's be, the limit t -*• » 
must yield r -*• 1. 

3. The General Case.—We now return to consider­
ation of the general equations 1.2-1.7, assuming tha t 
Xa, Xb, k\, ki and [M] are all constant in time. 

Let us consider the function Q(s,t) defined by 
CO 

Q(s,t) = X s"Qn(t), °° > * > 0 (3.1) 
n = 1 

This function obeys formulas of the type 

= X W(2»M = »W (3.2a) 
« = i 

= 2 »(" - D<2»(0 = n\t) - n(t) (3.2b) 

dQ(s,t)\ 
ds :, 

ds 2 i, 

etc. Hence the determination of Q(s,t) near 5 = 1 
solves the problem of finding the moments tw of Qn(t). 

I t is interesting to note tha t the generating function 
Q(s,t) also yields the functions Qn(Jt) through the 
formula 

y " W n! ds» !„„ (3.3) 

but we do not use this relationship here. 
Let us put 

OO CO 

Ri(s,t) = X s»P„M), Ri(S,t) = X s"P»,2(0 (3.4) 
K = I B = 1 

Equations 1.3, 3.1, and 3.4 yield 

Q(s,t) = R1(Sj) + R2(S,t) (3.5) 

Let us define the following Laplace transforms 

A,i(p) = J a e-"'Pn,i(t)dt, » = 1 , 2 (3.6a) 

Ri(s,p) = C e-"'Ri(s,t)dt = X snPn,i(p), 

i = 1, 2 (3.6b) 

Q(s,P) = J n " e-"(Q(i,*)d< = Ri(s,p) + Ri(s,P) (3.6c) 

The Laplace transform P'n,>{p) of dP„„-(0/d< obeys the 
familiar formula 

P'n,i(p) = pPn.i(p) ~ A,,(0), { = 1,2 

On taking the Laplace transform of both sides of eq. 1.7 
and using 1.5, we find tha t for n — 1 

PPUP) - 4> = - ( [M]*! + Xb)PUP) + KPUp) (3.7a) 

PPUP) - (1 - +) = -([M]A2 + K)Pu-I(P) + KPu1(P) 
(3.7b) 

and for » > 1 

pA, t(p) = -([M]A1 + Xb)A11(^) + kdM]Pn-ui(P) + 
XaA,2(p) (3.7c) 

pPn.lp) = -([M]A2 + K)PnAP) + UM]Pn-U2(P) + 
KPn.l(p) (3.7d) 

We now multiply 3.7a by s and 3.7c by s» and sum these 
equations over n to obtain 

CO CO 

X S*pPn,l(P) - S* = -(Wk1 + Xb) X SnPn,l(P) + 

A1[M] X S-Pn-Ul(P) + K X S"Pn,*(P) (3.8) 
K = 2 K = I 

We note t ha t 

X S-Pn-Ui(P) = * X ^A11(P) (3.9) 
K = 2 M = I 

Equations 3.6, 3.8 and 3.9 yield 

(p + (1 - S)[M]A1 + K)Ri(s,p) - KRi(s,P) = *,/, (3.10a) 

Applying the same process to eq. 3.7b and 3.7d we get 

(p + (1 - S)[M]A2 + K)Ri(s,p) - KRi(s,p) = s(l - </-) 
(3.10b) 

Equations 3.10, being two independent algebraic equa­
tions in two unknowns Ri and ^ 2 , can be solved. On 
doing this and adding the results in accordance with 
3.6c, we find 

Q(s,P) = 
s(p + Xa + Xb) + (./-[MJ2 + (1 - ^)[M]A1)(S - s2) 

(p + [M]A1(I - s) + Xb)(P + [M]A2(I - s) + K) - XaXb 
(3.11) 

We now apply to 3.11 standard techniques for the 
inversion of Laplace transforms. The denominator of 
the fraction on the right in 3.11 is quadratic in p and 
can therefore be writ ten in the form 

(p + [M]A1(I - s) + Xb)(P + [M]A2(I - s) + Xa) -
XaXb = (P - Vl(S))(P - V2(S)) (3.12) 

where the roots v\(s) and y2(s) are functions of 5. An 
elementary calculation yields 

2vi(s) = ± 

V ( I - S)=[MP(A1 - A2)
2 + a2 - 2[M](Xa - Xb)(A1 - A2)(I - s) 

- (1 - S)[M](Ai + A2) - a (3.13a) 

w h e r e i = 1, 2 a n d 

a = Xa + Xb (3.13b) 

L e t u s p u t 

W = ( I - 1/.J1 + <J2 (3.13c) 

U s i n g 3.12 a n d 3.13, 3.11 m a y b e r e w r i t t e n in t h e f o r m 

Qis.p) - sp 
+ 

s(a + [M]M(1 - s)) 

(P ~ V1(S))(P - v2(s)) (p - vi(s))(p - V1(s)) 
(3.14) 

Laplace transforms with the simple dependence on p 
shown in 3.14 are easily inverted, and a slight rearrange­
ment of the result of such an inversion yields the follow­
ing expression for Q(s,t) 

Q(s,t) = Kc1(S) + a + 0.[M](I - !))«»(•)' 
vi(s) - v2(s) 

(vi(s) + a + W[M](1 - s )K ' ( s ) , l (3.15) 

Using eq. 3.2, 3.15 and 3.13 we can now calculate n and 
«5 by differentiation. On doing this straightforward, 
but lengthy, calculation we find 

n = 1 + [MJi (3.16) 

where 

A = ifrki + (1 - ^ J 2 (3.17) 
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a n d 

w2 = 1 - [M]2J(I - C-M)/a* + (3[M]* + [M]%b/a)t + 

[UVkV (3.18) 
where 

b = 2{h - fc)Vd - vO (3-19) 

It follows from 3.18, 3.16and 1.9b that 

V *£_/ ^ + k[M]t 
1 + [U]kt 

(3.20) 
We have written eq. 3.10, 3.18 and 3.20 in such a way 
that the dependence of the averages on [M] is exhibited 
explicitly. 

It follows from 3.20, 3.16 and 1.9c that 

r = 1 + (1 + [M]VM(W)-1 -
(1 + [Mjb/ka + [M]2a"2&(l - e-"t))(H)-2 (3.21) 

From which we see that whenever a is non-zero 
lira r = 1 (3.22) 

n —*• ro 

i.e., in the limit of high number average molecular 
weight the molecular weight distribution must become 
perfectly sharp. This does not mean, however, that r 
is close to 1 for all degrees of polymerization. If [WL]b 
be > > ka, then 3.21 can yield r » 1 even for large n, 
although r — 1 approaches zero with order 0(1/«). 

We note that eq. 3.21 becomes identical with 2.6 in 
the following limits 
case I : Xa >• 0, while Xi,, ki, k%, [M], and / remain fixed at 

arbitrary positive values 
case I I : ki >• ki, while Xa, Xb, ki, [M], and t remain fixed at 

arbitrary positive values 
case I I I : [M] > 0, while Xn, Xb, ki, ki, and t remained 

fixed at arbitrary positive values 
in agreement with the discussion of section 2. 

If in 3.21 we take the limit a —*• 0, keeping \p fixed at a 
positive value less than one, and keeping ki, ki and t 
fixed at arbitrary positive values (it is important here 
that t be held finite), we then obtain 2.13. 

A special case of the present theory is that in which 
Xa, Xb and ki are strictly positive but ki = 0. This gives 

a model for reversible termination: a dynamic equi­
librium between two states 1 and 2, one of which, 1, can 
add monomer, but the other, 2, cannot. In this case k 
and b simplify to 

* = **i = r ^ V (3-23) 

Xa - r Xb 

6 - 2 ^ l - *> " ( ^ T O (3-24) 

but the essential character of our results 3.16, 3.20 and 
3.21 is unchanged: In particular, 3.22 still holds. 

For the experimenter, the outstanding characteristics 
of the present mechanism are (1) for a fixed set of 
rate constants such that X3 > 0, Xb > 0, and fixed extent 
of reaction (i.e., fixed n), r depends on [M] and ap­
proaches 1 + («)_ 1 - (w)"2 as [M] -*• 0; (2) for 
fixed rate constants with Xa > 0, Xb > 0, and fixed [M], 
r -*• 1 as t -*• ». 

Unfortunately, no systematic experimental studies 
designed to verify conclusions 1 and 2 have yet been re­
ported. 

Data10 on the n.m.r. spectra and on the molecular 
weights of the products of homogeneous anionic 
polymerization of methyl methacrylate in toluene, and 
also in mixtures of toluene with ether or tetrahydro-
furan, show values greater than one for r and for the 
persistence ratio p denned in section 3 of ref. 3. 
Data1112 on the products of homogeneous anionic 
polymerization of a-methylstyrene indicate that values 
of r and of p close to 1 are readily obtained for this mon­
omer. Values of r < 1.05 are reported in anionic poly­
merizations of styrene.13 If our mechanism applies to 
these systems it appears that, at the monomer concen­
trations employed, in methyl methacrylate reactions 
la and lb are slower than Ic and Id, whereas the reverse 
seems to be true for a-methyl styrene and possibly also 
for styrene for which p-values are not yet available. 
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Preprints, 142nd National Meeting of the American Chemical Society, 
Atlantic City, X. J., September, 1962; D. A. Glusker and R, A. Galluccio, 
ibid., p. 331. 
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